Indagine sui consumi elettrici di un ufficio
(C.N.R. I.E.R.EN.)

Palermo, Giugno 1993
1. Introduzione

Il settore civile non residenziale rappresenta il comparto in cui si registra la più elevata crescita dei consumi elettrici in Italia (+132% tra il 1980 ed il 1991). Nel nuovo contesto internazionale in cui una grande attenzione e' posta alla stabilizzazione delle emissioni di anidride carbonica, e' importante comprendere meglio le modalità d'uso dell'energia, le dinamiche temporali, i potenziali di risparmio elettrico di questo settore. Elemento prioritario di una strategia d'intervento e' quello della valutazione degli usi elettrici disaggregati per i vari settori del terziario e per modalità d'uso. Pur non essendo ancora disponibili questi dati per l'Italia, sono in corso alcune ricerche dell'Enel e dell'Enea che entro breve tempo dovrebbero fornire utili informazioni.

Il nostro Istituto sta svolgendo un'attività' complementare a quella gia' avviata da questi enti ed ha deciso di analizzare con grande dettaglio i consumi elettrici civili non residenziali della città di Palermo. Questo quaderno riporta i risultati di una prima fase della ricerca volta a mettere a punto una metodologia di "electric audit" e di tararla analizzando i consumi dei locali che ospitano il nostro Istituto.
In appendice sono riportate le schede messe a punto per la rilevazione dei dati.
2. Caratteristiche dell'edificio

L'istituto è inserito in un condominio ed occupa il piano terra (520 m²) ed il semicantinato (250 m²). L'altezza degli ambienti è 3 m. Questi due spazi sono divisi in 30 ambienti di cui 23 al piano terra. I dipendenti sono costituiti dal Direttore, da tre Ricercatori, tre tecnici, due amministrativi, tre borsisti, quattro collaboratori esterni, per un totale di 16 persone. Possano considerarsi accettabili sia la coibentazione che il livello di illuminamento naturale che risulta però scarso nel piano semicantinato.
3. Analisi dei consumi elettrici misurati.

Si è stabilito di distinguere le voci di assorbimento in tre grandi categorie: climatizzazione, illuminazione e "macchine ed attrezzature" (tutte le apparecchiature elettriche che non rientrano nelle prime due voci). Visto il basso consumo complessivo della terza voce, non si è ritenuto opportuno scorporarla ulteriormente, almeno per questo settore del terziario.

Dall'analisi dei dati desunti dalle bollette ENEL si possono fare alcune riflessioni.

Come si vede dalla Tab. 1, i consumi hanno un andamento incostante, con due minimi nei mesi di Maggio e Ottobre ed un massimo a Gennaio.

**Tab. 1 Valori registrati nelle bollette ENEL per il 1992**
(nella colonna "Climatizz." i valori calcolati)

<table>
<thead>
<tr>
<th></th>
<th>kW (max.)</th>
<th>Totali</th>
<th>Climatizz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicembre 91</td>
<td>38,40</td>
<td>4,360</td>
<td>3,318</td>
</tr>
<tr>
<td>Gennaio</td>
<td>30,65</td>
<td>6,160</td>
<td>5,138</td>
</tr>
<tr>
<td>Febbraio</td>
<td>37,60</td>
<td>4,680</td>
<td>3,658</td>
</tr>
<tr>
<td>Marzo</td>
<td>34,80</td>
<td>4,740</td>
<td>3,718</td>
</tr>
<tr>
<td>Aprile</td>
<td>33,20</td>
<td>2,180</td>
<td>1,158</td>
</tr>
<tr>
<td>Maggio</td>
<td>25,60</td>
<td>1,100</td>
<td>78</td>
</tr>
<tr>
<td>Giugno</td>
<td>26,00</td>
<td>2,460</td>
<td>1,438</td>
</tr>
<tr>
<td>Luglio</td>
<td>31,20</td>
<td>3,960</td>
<td>2,938</td>
</tr>
<tr>
<td>Agosto</td>
<td>28,40</td>
<td>4,020</td>
<td>2,998</td>
</tr>
<tr>
<td>Settembre</td>
<td>25,60</td>
<td>2,860</td>
<td>1,838</td>
</tr>
<tr>
<td>Ottobre</td>
<td>26,00</td>
<td>940</td>
<td>0</td>
</tr>
<tr>
<td>Novembre</td>
<td>30,40</td>
<td>1,360</td>
<td>338</td>
</tr>
</tbody>
</table>

In base alle rilevazioni dei consumi effettuate in un periodo in cui non si è utilizzato l'impianto di climatizzazione, è valutata una media mensile di 1022 kWh attribuibile agli usi elettrici che esulano dalla climatizzazione. Pertanto, scorporando questa voce, si può ottenere una stima in prima approssimazione dei consumi di climatizzazione, come si vede nell'ultima colonna.
4. Disaggregazione dei consumi elettrici.

4.1. Climatizzazione


Questi fattori provocano un particolare microclima che caratterizza tale zona come leggermente più fredda, umida e ventosa del resto della città. L'istituto è dotato di un impianto di climatizzazione a pompe di calore del tipo centralizzato costituito da un'unità centrale e da 22 split. La potenza di targa dell'apparecchio è di 30 KW per funzionamento invernale e di 26 KW per funzionamento estivo.

Dai dati di assorbimento, rilevati direttamente sulle tre fasi, si sono ottenuti i seguenti valori: R = 42 A., S = 43 A., T = 42 A.

Questi valori sono stati ottenuti durante il funzionamento a regime, in una giornata particolarmente fredda, con tutti gli split accesi, e con il termostato d'ambiente regolato per la temperatura massima. I valori letti rappresentano quindi l'assorbimento di corrente massimo dell'impianto.

Dalla nota relazione \( P = V \times I \times \cos \varphi \) si ottiene il valore di 25 KW, che a meno di errori sul fattore di potenza, considerato pari a 0.9, rappresenta la potenza di targa della macchina.

Oltre all'impianto a pompe di calore, nell'istituto sono presenti 4 stufe elettriche da 2 KW ciascuna. Tali stufe, vengono utilizzate sia come unica fonte di riscaldamento nel caso in cui una ridotta presenza di personale renda antieconomica l'accensione del gruppo centralizzato, sia, soprattutto, come fonte integrativa di riscaldamento.

Come detto nonostante l'edificio sia di recente costruzione e presenti caratteristiche di coibentazione medie (riportate alla media di Palermo), durante alcune giornate particolarmente rigide l'impianto a pompe di calore stenta a rendere confortevole la temperatura. Con l'aiuto di un foglio elettronico, si è messo a punto un procedimento semiautomatico di calcolo che, partendo dalla potenza di targa del climatizzatore come dato di input, fornisce il consumo nei singoli mesi.

La formula utilizzata è la seguente:

\[
\text{kWh} = P \times n_k \times h_k \times k_w
\]

dove:

\( P \) = potenza di targa in KW

\( n_k \) = numero di giorni nel mese
hₜ = ore al giorno in cui l'impianto sta acceso.
kₑ = coefficiente di contemporaneità.
kₓ = coefficiente di utilizzo.

Il valore di P è la potenza di targa del climatizzatore distinto tra invernale ed estivo.

Il valore di nₑ è stato calcolato, per ogni mese, sottraendo ai giorni totali le domeniche ed i festivi. I Sabati, sono stati considerati per metà lavorativi, e per metà festivi.

Il valore di hₓ è stato considerato pari ad 11,5 ore, cioè dall'apertura alla chiusura dell'Istituto.

Il valore di kₓ è stato stimato in funzione di consigli ottenuti dai venditori delle macchine e da considerazioni oggettive.

Per calcolare il coefficiente di utilizzo si è cercata una relazione tra le temperature esterne e di progetto, e l'assorbimento in l'ann.

Per determinare il kₓ si è fatta l'ipotesi che l'impianto sia stato dimensionato correttamente, e si sono seguite le seguenti metodologie di calcolo in Estate ed in Inverno utilizzando i dati di temperatura riportati nella Tab. 2. (O. A. 1992)

Tab. 2 Andamento delle temperature nella città di Palermo (°C)

<table>
<thead>
<tr>
<th>mese</th>
<th>temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
</tr>
<tr>
<td>Gennaio</td>
<td>15.0</td>
</tr>
<tr>
<td>Febbraio</td>
<td>14.5</td>
</tr>
<tr>
<td>Marzo</td>
<td>16.8</td>
</tr>
<tr>
<td>Aprile</td>
<td>18.4</td>
</tr>
<tr>
<td>Maggio</td>
<td>23.1</td>
</tr>
<tr>
<td>Giugno</td>
<td>26.1</td>
</tr>
<tr>
<td>Luglio</td>
<td>27.4</td>
</tr>
<tr>
<td>Agosto</td>
<td>30.2</td>
</tr>
<tr>
<td>Settembre</td>
<td>27.5</td>
</tr>
<tr>
<td>Ottobre</td>
<td>25.9</td>
</tr>
<tr>
<td>Novembre</td>
<td>21.1</td>
</tr>
<tr>
<td>Dicembre</td>
<td>13.0</td>
</tr>
</tbody>
</table>
INVERNO

Il valore di $k_s$ varia linearmente tra il valore 1 quando la temperatura media esterna è di 5°C e 0 quando la temperatura media esterna è di 19°C.

ESTATE

Per la climatizzazione estiva fattori quali irraggiamento, calore prodotto da persone, illuminazione e macchine, assumono rilevante importanza. Pertanto, il metodo utilizzato per l’inverno è stato modificato. Dato l’obiettivo di estrema semplicità che ci si era posti, si è deciso di trascurare la variazione nell’arco dell’anno dovuta alle persone ed alle macchine (almeno negli uffici). Pertanto si sono adottati i seguenti valori:

\[ k_s = 1 \quad \text{quando} \quad T_{max} = 35°C \]
\[ k_s = 0 \quad \text{quando} \quad T_{max} = 24°C \]

Tutti gli altri valori vengono calcolati per interpolazione.
I valori di consumo di energia elettrica da imputare al climatizzatore a pompe di calore, rappresentano la maggior parte dei consumi dell’istituto per la climatizzazione, ma non il totale. Infatti, come detto, vi sono 4 stufe da 2 KW ciascuna che vengono utilizzate nei giorni più freddi.
Anche per le stufe, il consumo è dato dalla

\[ kWh = P^* n_s^* h_s^* t_s^* k_s \]
dove i coefficienti hanno gli stessi significati precedentemente spiegati.
Per tenere conto del fatto che le stufe vengono accese soltanto nelle giornate più fredde, si è inserita una piccola modifica nella formula di calcolo. Infatti, il valore del consumo è uguale al valore dell’espressione solo nel caso in cui la temperatura esterna è minore di un valore prefissato, inseribile come input.
Nella Tab. 3 sono riportati i dati calcolati con il procedimento appena descritto per confronto sono anche riportati i dati dedotti dalle bollette ENEL (vedi Tab.1).
Non vi è una esatta corrispondenza tra i valori calcolati nei mesi, e gli stessi valori estrapolati dalle bollette. Parte della differenza dei valori mensili di consumo può essere spiegata dal fatto che le bollette non vengono fatturate dal primo del mese al primo giorno del mese successivo. Inoltre si riferiscono ad un periodo di tempo che oscilla tra i 27 ed i 35 giorni nei diversi mesi.
Ha più significato, quindi, una valutazione di carattere stagionale.
In questo caso, come si può vedere nella Tab. 3, gli scostamenti tra i valori calcolati e quelli misurati sono molto ridotti.

**Tab. 3 Confronto tra i dati di climatizzazione, stimati dalle bollette e quelli calcolati (kWh)**

<table>
<thead>
<tr>
<th></th>
<th>bollette</th>
<th>calcolati</th>
<th>diff. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gennaio</td>
<td>5138</td>
<td>3704</td>
<td>38,7</td>
</tr>
<tr>
<td>Febbraio</td>
<td>3658</td>
<td>3761</td>
<td>-2,7</td>
</tr>
<tr>
<td>Marzo</td>
<td>3718</td>
<td>2777</td>
<td>33,9</td>
</tr>
<tr>
<td>Aprile</td>
<td>1158</td>
<td>1362</td>
<td>-15,0</td>
</tr>
<tr>
<td>Maggio</td>
<td>78</td>
<td>217</td>
<td>-64,0</td>
</tr>
<tr>
<td>Giugno</td>
<td>1438</td>
<td>1511</td>
<td>-4,8</td>
</tr>
<tr>
<td>Luglio</td>
<td>2938</td>
<td>2356</td>
<td>24,7</td>
</tr>
<tr>
<td>Agosto</td>
<td>2998</td>
<td>3325</td>
<td>-9,8</td>
</tr>
<tr>
<td>Settembre</td>
<td>1838</td>
<td>2333</td>
<td>-21,2</td>
</tr>
<tr>
<td>Ottobre</td>
<td>0</td>
<td>30</td>
<td>-100,0</td>
</tr>
<tr>
<td>Novembre</td>
<td>338</td>
<td>583</td>
<td>-42,0</td>
</tr>
<tr>
<td>Dicembre</td>
<td>3318</td>
<td>4196</td>
<td>-20,9</td>
</tr>
</tbody>
</table>

**Totale**  | 26618    | 26154    | 1,78    |

**Totale estivo**  | 9212    | 9525    | -3,27   |

**Totale invernale**  | 17328   | 16383   | 5,77    |

Nota: Maggio e Ottobre non sono stati attribuiti né alla stagione estiva né a quella invernale.
4.2. Illuminazione

L'impianto di illuminazione dell'istituto è costituito da plafone montate a controsoffitto con tubi fluorescenti da 18, 36 e 56 W e da alcune lampade ad incandescenza da tavolo, vedi Tab.4. Anche per l'illuminazione, si è cercato di determinare una procedura di calcolo il più possibile automatica, in modo da ottenere il valore di assorbimento mensile unicamente dalla potenza totale installata e da considerazioni riguardanti le caratteristiche di illuminazione naturale degli edifici, secondo valutazioni soggettive dell'intervistatore.
Questo sempre allo scopo di definire una procedura di indagine semplificata per le successive uscite evitando di effettuare numerose e fastidiose domande sulle modalità di utilizzo di ciascun apparecchio illuminante.
Il consumo totale è sempre dato dalla formula:

\[ \text{kWh} = P \times n \times h \times k_c \times k_u \]

dove i simboli hanno gli stessi significati visti nel paragrafo relativo alla climatizzazione.

L'unica differenza, sta nella determinazione di \(k_u\), che dipende dalla luminosità naturale, e non dalla temperatura.
In un primo momento, si era pensato di calcolare per ogni stanza il valore delle ore di utilizzo nei mesi, e nelle giornate.
Questo primo tentativo è stato piuttosto deludente, infatti, si sono trovati dei risultati assolutamente inattendibili, con consumi eccessivamente ed immotivatamente differenti da stanza a stanza.
Ci si è resi conto, pertanto, che tale modalità andava modificata e resa più snella ragionando su valori medi.

Il coefficiente \(k_u\) è stato quindi calcolato come prodotto di due fattori: uno, fisso (con un campo di variazione tra 0,25 e 1), dipendente dalle caratteristiche di esposizione dell'edificio e dall'entità delle superfici vetrate (nel caso dello I.E.R.EN. è stato calcolato pari a 0,65) l'altro, variabile, assume valore minimo pari a 0,5 nel mese di Luglio e massimo, pari a 1, nei mesi di Dicembre e Gennaio.
Questi valori, sono tali da ottenere nelle condizioni di esercizio più estreme, (in inverno con edificio male esposto e con scarse superfici vetrate, ed in estate per un edificio ben esposto e con ampie superfici vetrate), valori di ku ragionevoli e coerenti con le condizioni di esercizio.
In Tab. 4 sono riportati sia il valore fisso dipendente dalle caratteristiche di luminosità dell'edificio che i valori riassuntivi inerenti degli'impiani di illuminazione.
I valori dei coefficienti utilizzati e i valori di consumo mensili calcolati, dovuti all'illuminazione sono riportati nella tabella 5.
Non è possibile confrontare tali dati con quelli delle bollette non essendo possibile scorporarli dai dati di assorbimento delle macchine ed attrezzature.
### Tab. 4 Dati generali di illuminazione degli uffici del C.N.R. I.E.R.EN.

**Illuminazione naturale**

<table>
<thead>
<tr>
<th>ottima</th>
<th>buona</th>
<th>media</th>
<th>scarsa</th>
<th>nulla</th>
<th>valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.44</td>
<td>0.62</td>
<td>0.81</td>
<td>1</td>
<td>0.65</td>
</tr>
</tbody>
</table>

**Illuminazione artificiale**

<table>
<thead>
<tr>
<th>Incandescenza</th>
<th>Fluorescenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbo</td>
<td>Tubolari</td>
</tr>
<tr>
<td>n°</td>
<td>Watt</td>
</tr>
<tr>
<td>piano terra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>semicantin.</td>
<td>7</td>
</tr>
<tr>
<td>totale</td>
<td>264</td>
</tr>
</tbody>
</table>

### Tab. 5 Consumi mensili calcolati per i sistemi di illuminazione

<table>
<thead>
<tr>
<th>dati di utilizzo</th>
<th>coefficienti</th>
<th>consumi (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>giorni</td>
<td>ore</td>
<td>Kc</td>
</tr>
<tr>
<td>Gennaio</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Febbraio</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Marzo</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Aprile</td>
<td>23.5</td>
<td>12</td>
</tr>
<tr>
<td>Maggio</td>
<td>22.5</td>
<td>12</td>
</tr>
<tr>
<td>Giugno</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Luglio</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Agosto</td>
<td>21.5</td>
<td>12</td>
</tr>
<tr>
<td>Settembre</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Ottobre</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Novembre</td>
<td>21.5</td>
<td>12</td>
</tr>
<tr>
<td>Dicembre</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>
4.3. Descrizione delle apparecchiature

Per individuare i consumi imputabili alle apparecchiature si è provveduto al censimento di quest'ultime. In Istituto sono presenti le macchine presenti nella seguente Tab.6.

Tab.6 Apparecchiature presenti nell'Istituto nel 1992

<table>
<thead>
<tr>
<th>Tipo</th>
<th>n°</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>10</td>
</tr>
<tr>
<td>stampanti</td>
<td>7</td>
</tr>
<tr>
<td>fax</td>
<td>1</td>
</tr>
<tr>
<td>fotocopiatrice grande</td>
<td>1</td>
</tr>
<tr>
<td>fotocopiatrice piccola</td>
<td>2</td>
</tr>
<tr>
<td>plotter</td>
<td>1</td>
</tr>
<tr>
<td>visore microfiches</td>
<td>1</td>
</tr>
<tr>
<td>scanner</td>
<td>1</td>
</tr>
<tr>
<td>tavoletta digitizer</td>
<td>1</td>
</tr>
<tr>
<td>rilegatore</td>
<td>2</td>
</tr>
<tr>
<td>scaldacqua piccolo</td>
<td>1</td>
</tr>
<tr>
<td>scaldacqua grande</td>
<td>2</td>
</tr>
<tr>
<td>frigorifero piccolo</td>
<td>1</td>
</tr>
<tr>
<td>distributore acqua a gravità</td>
<td>1</td>
</tr>
<tr>
<td>macchinetta caffè</td>
<td>1</td>
</tr>
</tbody>
</table>

Gli assorbimenti sono stati rilevati, macchina per macchina, servendosi di una pinza amperometrica collegata direttamente al quadro generale e verificando gli assorbimenti nelle varie condizioni d'uso. Come è ovvio questi assorbimenti variano in maniera notevole ed è quindi necessario verificarli attentamente. Ad esempio si verificano ampie variazioni negli assorbimenti delle fotocopiaticri. Una fotocopiatrice di grandi dimensioni nella fase di preriscalddamento assorbe circa 6.5 A., in stand-by assorbe solo 0.7 A. per passare a 2 A. nella fase di funzionamento. Discorso analogo per quanto riguarda i frigoriferi o gli scaldabagni che hanno un funzionamento on-off variabile in relazione alle modalità di impiego. Assieme agli assorbimenti sono stati rilevati i tempi di utilizzo nelle diverse condizioni d'uso (tipicamente stand-by e regime) in modo da potere risalire da questi dati al valore di consumo annuo per la singola apparecchiatura (ed avere quindi un'idea del peso di questa sul complessivo) ed il consumo totale, nonché l'aliquota della categoria apparecchiature sul totale dei consumi dell'istituto. La verifica di tali valori e la loro importanza ci ha permesso di mettere a punto una scheda nella quale sono presenti delle caselle nelle quali inserire: il tipo di apparecchiatura, il dato di targa (in kW), gli assorbimenti in stand-by e regime.
Per quanto riguarda apparecchiature con bassi assorbimenti, quali computers e stampanti, si è fatto riferimento ai dati contenuti in letteratura (Johansson, 1989) analoghi a quelli riportati in Tab.7.

Tab.7 Potenza di targa e potenza misurata per alcuni personal computers e stampanti (W)

<table>
<thead>
<tr>
<th>Modello</th>
<th>Targa</th>
<th>Medio</th>
<th>Picco</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PS - 2/80</td>
<td>672,0</td>
<td>209,0</td>
<td>209,0</td>
</tr>
<tr>
<td>Zenith 181</td>
<td>21,0</td>
<td>11,6</td>
<td>16,1</td>
</tr>
<tr>
<td>Epson Mx 100</td>
<td>100,0</td>
<td>19,1</td>
<td>31,0</td>
</tr>
<tr>
<td>Laserwriter Plus</td>
<td>531,0</td>
<td>129,0</td>
<td>233,0</td>
</tr>
</tbody>
</table>

Vengono inoltre rilevati i tempi di utilizzo nelle diverse condizioni e da questi si è risaliti ai consumi annui.

Infatti il prodotto della potenza, se questa viene rilevata, o degli assorbimenti per la tensione di alimentazione permette di ottenere il consumo annuo, previa moltiplicazione per le ore di utilizzo giornaliere (nelle diverse condizioni) e per i giorni di utilizzo annui. Quest'ultimo dato è stato calcolato tenendo conto sia delle ferie che della settimana lavorativa.

Sono state utilizzate le seguenti formule in relazione ai dati disponibili (potenza di targa o misure effettuate) per le diverse apparecchiature:

\[
kWh = P \times h_e \times n_e
\]

\[
kWh = V \times (I \times h_e + I \times h_e') \times n_e \times \cos \varphi
\]

dove:

- \( P \) = potenza di targa in kW
- \( n_e \) = numero di giorni nel mese
- \( h_e \) = ore al giorno in cui l'impianto rimane in funzione.
- \( I \) = assorbimento in ampere.

l'apice ' si riferisce alle grandezze relative al funzionamento in stand-by ed l'apice '' alle grandezze relative alla condizione di regime.
Il valore della potenza impegnata per le macchine e le apparecchiature dedotto dai dati di targa delle apparecchiature è riportato in Tab. 8

Tab. 8 Valori di targa rilevati per tutte le apparecchiature d’Istituto

<table>
<thead>
<tr>
<th>Tipo</th>
<th>W complessivi</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>2500</td>
</tr>
<tr>
<td>stampanti</td>
<td>2800</td>
</tr>
<tr>
<td>fax</td>
<td>50</td>
</tr>
<tr>
<td>fotocopiatrice grande</td>
<td>1600</td>
</tr>
<tr>
<td>fotocopiatrice piccola</td>
<td>1300</td>
</tr>
<tr>
<td>plotter</td>
<td>100</td>
</tr>
<tr>
<td>visore microfiches</td>
<td>300</td>
</tr>
<tr>
<td>scanner</td>
<td>100</td>
</tr>
<tr>
<td>tavoletta digitizer</td>
<td>30</td>
</tr>
<tr>
<td>rilegatore</td>
<td>350</td>
</tr>
<tr>
<td>scaldacqua piccolo</td>
<td>300</td>
</tr>
<tr>
<td>scaldacqua grande</td>
<td>2400</td>
</tr>
<tr>
<td>frigorifero piccolo</td>
<td>600</td>
</tr>
<tr>
<td>distributore acqua a gravità</td>
<td>90</td>
</tr>
<tr>
<td>macchinetta caffè</td>
<td>850</td>
</tr>
</tbody>
</table>

**TOTALE** | 13370

Va sottolineato il fatto che la potenza reale ottenuta dalle misure fatte o dai dati della letteratura risulta di 8100 W, ossia il 40% del valore di targa.
4.4. Verifica dei dati misurati e calcolati

Ottenuti i dati di consumo annui per le singole apparecchiature e per il totale delle apparecchiature, considerando anche la aliquote relative all'impianto di illuminazione e di condizionamento precedentemente descritti è stato possibile confrontare i dati complessivi calcolati con quelli rilevati dall'ENEL dal contatore ottenendo, come si è già visto, una buona concordanza sulle medie stagionali.

Fig. 1 Consumi mensili per categoria (calcolati)
Fig. 2 Confronto tra i consumi elettrici totali mensili calcolati e reali

Fig. 3 Consumi stagionali a mq.
L'esame della Fig.5 ci permette di fare alcune riflessioni. Si nota che sia il consumo per mq dell'impianto di illuminazione che quello dell'impianto di climatizzazione risultano molto più elevati in inverno piuttosto che in estate.

Nelle Fig. 6 e 7 i consumi elettrici disaggregati per modalità d'uso consentono di valutare dei valori di intensità per unità di superficie e per dipendente.
Calcolando l'intensità elettrica delle apparecchiature per unità di superficie si ottiene un valore di 13.5 W/mq. Non considerando gli scaldabagni e il frigorifero, l'intensità elettrica delle apparecchiature per unità di superficie si riduce a 9.5 W/mq, valore analogo alla media dei dati riportati in letteratura.

**Fig. 6 Rapporto tra la potenza installata e la superficie occupata**

---

**Fig. 7 Rapporto tra la potenza installata ed il n° dei dipendenti**

---
5. Considerazioni conclusive

L'analisi svolta presso l’istituto ci ha permesso quindi non solo di avere dei dati relativi ai dati di assorbimento nelle diverse condizioni d’utilizzo di alcune apparecchiature da ufficio e non, ma anche di affinare la metodologia di calcolo degli assorbimenti delle tre categorie fin qui descritte.

I dati delle bollette sono serviti soprattutto come controllo per i dati acquisiti dall’analisi sul campo.

I valori finali sono riportati nella Tab. 9 da cui si evince che il procedimento porta a dei valori sufficientemente vicini a quelli fatturati.

**Tab.9 Confronto tra i dati calcolati e le bollette.**

<table>
<thead>
<tr>
<th></th>
<th>climatizzazione</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bollette</td>
<td>calcolati</td>
<td>diff %</td>
<td>bollette</td>
<td>calcolati</td>
</tr>
<tr>
<td>Gennaio</td>
<td>5.138</td>
<td>3.704</td>
<td>38.72%</td>
<td>6.160</td>
<td>5.037</td>
</tr>
<tr>
<td>Febbraio</td>
<td>3.658</td>
<td>3.761</td>
<td>-2.73%</td>
<td>4.680</td>
<td>4.977</td>
</tr>
<tr>
<td>Marzo</td>
<td>3.718</td>
<td>2.777</td>
<td>33.91%</td>
<td>4.740</td>
<td>3.952</td>
</tr>
<tr>
<td>Aprile</td>
<td>1.158</td>
<td>1.362</td>
<td>-14.98%</td>
<td>2.180</td>
<td>2.473</td>
</tr>
<tr>
<td>Maggio</td>
<td>78</td>
<td>217</td>
<td>-64.00%</td>
<td>1.100</td>
<td>1.220</td>
</tr>
<tr>
<td>Giugno</td>
<td>1.438</td>
<td>1.511</td>
<td>-4.83%</td>
<td>2.460</td>
<td>2.473</td>
</tr>
<tr>
<td>Luglio</td>
<td>2.938</td>
<td>2.356</td>
<td>24.68%</td>
<td>3.960</td>
<td>3.122</td>
</tr>
<tr>
<td>Agosto</td>
<td>2.998</td>
<td>3.325</td>
<td>-9.83%</td>
<td>4.020</td>
<td>4.008</td>
</tr>
<tr>
<td>Settembre</td>
<td>1.838</td>
<td>2.333</td>
<td>-21.21%</td>
<td>2.860</td>
<td>3.256</td>
</tr>
<tr>
<td>Ottobre</td>
<td>0</td>
<td>30</td>
<td>-100.00%</td>
<td>940</td>
<td>1.239</td>
</tr>
<tr>
<td>Novembre</td>
<td>338</td>
<td>583</td>
<td>-41.99%</td>
<td>1.360</td>
<td>1.765</td>
</tr>
<tr>
<td>Dicembre</td>
<td>3.318</td>
<td>4.196</td>
<td>-20.93%</td>
<td>4.340</td>
<td>4.542</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Totale</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26.618</td>
<td>26.154</td>
<td>1,78%</td>
<td>38.800</td>
<td>38.064</td>
<td>1,93%</td>
</tr>
<tr>
<td>Totale estivo</td>
<td>9.212</td>
<td>9.525</td>
<td>-3,28%</td>
<td>13.300</td>
<td>12.859</td>
<td>3,43%</td>
</tr>
<tr>
<td>Totale invernaile</td>
<td>17.328</td>
<td>16.382</td>
<td>5,77%</td>
<td>23.460</td>
<td>22.746</td>
<td>3,14%</td>
</tr>
</tbody>
</table>

Nota: Maggio e Ottobre non sono stati attribuiti né alla stagione estiva né a quella invernale

Sia i totali stagionali che quello annuale sono molto vicini ai dati delle bollette.

Quanto fin qui descritto ha portato alla formulazione di alcune schede che vengono utilizzate per la conduzione delle indagini, riportate in appendice.